martes, 28 de diciembre de 2010

Enlace covalente polar


Cuando un mismo átomo aporta el par electrónico, el enlace covalente es llamado enlace covalente polarizado. Aunque las propiedades de enlace covalente coordinado son parecidas a las de un enlace covalente normal (dado que todos los electrones son iguales, sin importar su origen), la distinción es útil para hacer un seguimiento de los electrones de valencia y asignar cargas formales. Una base dispone de un par electrónico para compartir y un ácido acepta compartir el par electrónico para formar un enlace covalente coordinado.
Se produce en elementos iguales, es decir, con una misma electronegatividad por lo que su resultado es 0. Un átomo no completa la regla del octeto.

enlace covalente

Un enlace covalente se produce por compartición de electrones entre dos átomos. Este tipo de enlace se produce cuando existe electronegatividad polar pero la diferencia de electronegatividades entre los átomos no es suficientemente grande como para que se efectúe transferencia de electrones. De esta forma, los dos átomos comparten uno o más pares electrónicos en un nuevo tipo de orbital, denominado orbital molecular. Los enlaces covalentes se suelen producir entre elementos gaseosos no metales.
A diferencia de lo que pasa en un enlace iónico, en donde se produce la transferencia de electrones de un átomo a otro, en el enlace químico covalente, los electrones de enlace son compartidos por ambos átomos. En el enlace covalente, los dos átomos no metálicos comparten uno o más electrones, es decir se unen a través de sus electrones en el último orbital, el cual depende del número atómico en cuestión. Entre los dos átomos puede compartirse uno, dos o tres electrónes, lo cual dará lugar a la formación de un enlace simple, doble o triple. En representación de Lewis estos enlaces pueden representarse por una pequeña línea entre los átomos.

Tioácidos


Son aquellos oxoácidos que resultan de la sustitución de uno o varios oxígenos por azufres. Se nombran con el prefijo tio- seguido por el ácido de origen (nomenclatura tradicional) o -tio- en la sistemática y de Stock, indicando con un prefijo el número de oxígenos restantes. Si se escribe tio sin prefijo numérico en la nomenclatura tradicional, se está indicando que se han sustituido todos los O por S, excepto en el caso de los tioácidos del azufre (aquí tio=monotio).
Fórmula General:
R.CO.SH o R.CS.OH
Ejemplo Nomenclatura sistemática Nomenclatura Stock Nomenclatura tradicional
H2S2O3 ácido trioxotiosulfúrico (VI) trioxotiosulfato (VI) de hidrógeno ácido tiosulfúrico
HNSO2 ácido dioxotionítrico (V) dioxotionitrato (V) de hidrógeno ácido tionítrico
H3PS2O2 ácido dioxoditiofosfórico (V) dioxoditiofosfato (V) de hidrógeno ácido ditiofosfórico
Las tiosales se nombran de forma análoga a las oxisales.
Ejemplo Nomenclatura sistemática y stock Nomenclatura tradicional
FeS2O3 trioxotiosulfato (VI) de hierro (II) tiosulfato ferroso
Al2(HPS4)3 hidrógenotetratiofosfato (V) de aluminio hidrógenotiofosfato de aluminio
Na3PS3O oxotritiofosfato (V) de sodio tritiofosfato de sodio

[editar] Iones

Son aquellos átomos o moléculas cargados eléctricamente. Pueden ser de carga positiva (cationes) o de carga negativa (aniones).

[editar] Cationes mono y poliatómicos

Son iones con carga positiva. Si son monoatómicos, se nombran simplemente nombrando el elemento después de la palabra catión. Por ejemplo, Li+ catión litio. Si el elemento tiene varios estados de oxidación (valencias) se usan números romanos (Stock) o los afijos hipo- -oso, -oso, -ico, per- -ico (tradicional).
Ejemplo Nomenclatura Stock Nomenclatura tradicional
Fe3+ catión hierro (III) catión férrico
Cu+ catión cobre (I) catión cuproso
Cuando se trata de cationes poliatómicos, se distinguen dos casos:
a) Si proceden de oxoácidos se añade el sufijo -ilo al nombre del oxoácido correspondiente en nomenclaturas tradicional (éste puede indicar la valencia en números romanos), también se puede nombrar en la Stock. Es como el oxoácido sin moléculas de agua.
Ejemplo Nomenclatura tradicional Nomenclatura Stock
NO2+ catión nitroilo catión dioxonitrógeno (V)
NO+ catión nitrosilo catión monoxonitrógeno (III)
SO2+ catión sulfinilo o tionilo catión monoxoazufre (IV)
SO22+ catión sulfonilo o sulfurilo catión dioxoazufre (VI)
UO2+ catión uranilo (V) catión dioxouranio (V)
UO22+ catión uranilo (VI) catión dioxouranio (VI)
VO3+ catión vanadilo (V) catión monoxovanadio (V)
VO2+ catión vanadilo (IV) catión dioxovanadio (IV)
b) Si proceden de hidruros, lleva el sufijo -onio.
Ejemplo Nombre
H3O+ hidronio u oxonio
NH4+ amonio
PH4+ fosfonio
SbH4+ estibonio
AsH4+ arsonio
BiH4+ bismutonio
H2S+ sulfonio
H2Cl+ cloronio

Peroxoácidos


Son aquellos oxoácidos que han sustituido un oxígeno por un grupo peroxo O2-. Su fórmula no se simplifica.
En la nomenclatura tradicional (la más frecuente) se añade peroxo-, y en las restantes se indica con -peroxo- el oxígeno sustituido. Si a la hora de formular pudiera haber confusión con otro oxoácido, se indica el grupo peroxo entre paréntesis.
Ejemplo Nomenclatura sistemática Nomenclatura Stock Nomenclatura tradicional
H2SO5 ácido trioxoperoxosulfúrico (VI) trioxoperoxosulfato (VI) de hidrógeno ácido peroxosulfúrico
HOONO ó HNO (O2) ácido monoxoperoxonítrico (V) monoxoperoxonitrato (V) de hidrógeno ácido peroxonítrico
H3BO4 ácido dioxoperoxobórico (III) dioxoperoxoborato (III) de hidrógeno ácido peroxobórico
Las peroxisales se nombran de forma análoga a las oxisales.
Ejemplo Nomenclatura sistemática y Stock Nomenclatura tradicional
K2S2O8 hexaoxoperoxodisulfato (VI) de potasio peroxodisulfato de potasio
Ba[NO (O2)]2 oxoperoxonitrato (III) de bario peroxonitrito de bario o bárico
CaSO5 trioxoperoxosulfato (VI) de calcio peroxosulfato de calcio

Poliácidos


Se trata de aquellos oxiácidos que resultan de la unión de 2 ó 3 moléculas de oxiácidos con la pérdida de una molécula de agua por cada unión que se realice. Es como si fuesen dímeros o trímeros.
Se nombran indicando el número de moléculas de ácido que se han unido con un prefijo (Nomenclatura tradicional) o indicando con prefijos el número de átomos del no metal o metal en los pocos casos en que ocurre (demás nomenclaturas).
Ejemplo Nom. Stock Nom. sistemática Nom. tradicional
H2S2O7 ácido heptaoxodisulfúrico (VI) heptaoxodisulfato (VI) de hidrógeno ácido disulfúrico
H2Cr2O7 ácido heptaoxodicrómico (VI) heptaoxodicromato (VI) de hidrógeno ácido dicrómico
H5P3O10 ácido decaoxotrifosfórico (V) decaoxotrifosfato (V) de hidrógeno ácido trifosfórico
Las sales de los poliácidos se nombran de forma análoga a las oxisales.
Ejemplo Nomenclatura sistemática y funcional Nomenclatura tradicional
CaCr2O7 heptaoxodicromato (VI) de calcio dicromato cálcico o de calcio
Mg2P2O7 heptaoxodifosfato (V) de magnesio difosfato magnesico
Na2S2O7 heptaoxodisulfato (VI) de sodio disulfato sódico

Sales mixtas


Las sales mixtas son compuestos resultado de sustituir los hidrógenos de un ácido por átomos metálicos distintos de hidróxidos. Las reglas para nombrar las sales mixtas en el sistema tradicional son análogas a las sales ácidas.
Ácido + Hidróxido1 + Hidróxido2 → Agua + Sal mixta
H2SO4 + Na(OH) + K(OH) → 2H2O + NaKSO4
Compuesto Nomenclatura tradicional
NaKSO4 tetraoxosulfato de sodio y potasio
CaNaPO4 ortofosfato de calcio y sodio

Sales básicas


Estas sales son compuestos que resultan de reemplazar parcialmente los oxhidrilos de un hidróxido por los aniones de un ácido. Para nombrarlos en el sistema tradicional depende de si el ácido es binario o ternario, es decir que si se trata de un hidróxido o un hidrácido. Cuando el ácido es un hidrácido se utiliza el nombre del no metal con su sufijo uro y se le antepone el prefijo “hidroxo” para el nombre general y como nombre especifico el nombre del metal. Y cuando el ácido es un hidróxido, como nombre general, se utiliza el nombre del no metal con el prefijo “hidroxo” y su correspondiente sufijo según su valencia (como se indica en la sección de las sales neutras ternarias), y como nombre especifico el nombre del metal.
Ácido + Hidróxido → Agua + Sal básica
HNO3 + Ca(OH)2 → H2O + CaNO3(OH)
Compuesto Nomenclatura tradicional
MgCl(OH) hidroxocloruro de magnesio
CaNO3(OH) hidroxonitrato de calcio

Sales ácidas


Las sales ácidas son compuestos cuaternarios que resultan del reemplazo parcial de los hidrógenos de un ácido por átomos metálicos. Los ácidos deben presentar dos o más hidrógenos en su molécula para formar estas sales. Para nombrarlos en el sistema tradicional se siguen las reglas de las sales neutras ternarias agregando la palabra “hidrógeno” antes del nombre del metal. Y para nombrarlos en el sistema Stock y sistemático se usan las reglas generales para las sales neutras ternarias, en estos dos sistemas, agregando la palabra “hidrógeno” antes del nombre del metal. Para poder encontrar la valencia del no metal para así poder nombrar correctamente la sal se puede usar el método utilizado en los compuestos de sales neutras ternarias, teniendo en cuenta: que el oxigeno trabaja con valencia -2; el hidrógeno trabaja con valencia +1; estos compuestos siguen la fórmula general Metal + Hidrógeno + No Metal + Oxigeno; los elementos con valencias positivas son el metal, el hidrógeno y los elementos con valencias negativas son el no metal y el oxigeno.
Ácido + Hidróxido → Agua + Sal ácida
H2SO4 + Na(OH) → H2O + NaHSO4
Compuesto Nom. Stock y sistemática Nom. tradicional
NaHSO4 hidrógenosulfato (VI) de sodio[2] sulfato ácido de sodio[2]
KHCO3 hidrógenocarbonato de sodio[2] carbonato ácido de sodio[2

sales neutras

Sales neutras

Las sales neutras son compuestos formados por la reacción de un ácido con un hidróxido (compuesto ternario básico) formando también agua. Entre las sales neutras se encuentran las binarias y las ternarias, que se diferencian entre si por el ácido con el que reaccionan, siendo estos un hidrácido o un oxácido.
Cuando reacciona un ácido con un hidróxido para formar una sal neutra se combinan todos los cationes hidronio (H+1) con todos los aniones hidroxilo (OH-1). Los cationes H+1 son los que dan la propiedad de ácido a los hidrácidos y oxácidos, y los aniones OH-1 son los que dan propiedad de base a los hidróxidos, y cuando estos ácidos y bases reaccionan dan lugar a una neutralización, que es la formación de agua, mientras que los iones restantes de la reacción forman una sal. Es por esta razón que estas sales reciben el nombre de "neutras". Ver las ecuaciones abajo mostradas.

Las sales neutras binarias o sales haloideas son compuestos formados por un hidrácido y un hidróxido. Para nombrarlos en el sistema tradicional, stock y sistemático se aplican las reglas generales usando el nombre del no metal con el sufijo –uro como nombre genérico y el nombre del metal como nombre especifico.
En las dos primeras ecuaciones se presenta el proceso completo para la formación de una sal neutra binaria y en las ultimas dos se ejemplifica por separado la neutralización y la formación de la sal neutra.
Hidrácido + Hidróxido → Agua + Sal neutra
HCl + Na(OH) → H2O + NaCl

H+1 + Cl-1 + Na+1 + (OH)-1 → H2O + NaCl

H+1 + (OH)-1 → H2O
Cl-1 + Na+1 → NaCl
Compuesto Nomenclatura sistemática Nomenclatura Stock Nomenclatura tradicional
NaCl cloruro de sodio cloruro de sodio cloruro sódico o cloruro de sodio
CaF2 difluoruro de calcio fluoruro de calcio fluoruro cálcico
FeCl3 tricloruro de hierro cloruro de hierro (III) cloruro férrico
CoS monosulfuro de cobalto sulfuro de cobalto (II) sulfuro cobaltoso

Nota: para el correcto nombramiento de estos compuestos hacer énfasis en que los no metales de los hidrácidos trabajan con la menor valencia (1 y 2), y como son los hidrácidos que reaccionan con los hidroxidos para formar las sales neutras binarias. Es por esta razón que en el caso del FeCl3 el hierro trabajo con la valencia +3 y el "no metal" cloro trabaja con -1, aunque el cloro posea las valencias 1, 3, 5 y 7.
Las sales neutras ternarias son compuestos formados por un hidróxido y un oxácido. La denominación que reciben las sales proviene del nombre del ácido, oxácido, que las origina. Para nombrar una sal cuando deriva de un ácido cuyo nombre especifico termina en -oso, se reemplaza dicha terminación por -ito. Análogamente cuando el nombre especifico del ácido termina en –ico, se reemplaza por -ato. Por ejemplo: el oxido de sodio (Na(OH)) reacciona con el ácido ortofósforico o ácido fosfórico (H3PO4) para formar la sal fosfato de sodio u ortofosfato de sodio (Na3PO4).
Otra manera para saber cuándo utilizar los sufijos –ito o –ato, en lugar de determinar de qué ácido proviene la sal neutra, para así nombrar el compuesto; se determina el número de valencia con el que trabaja el no metal diferente de oxigeno en el compuesto. El procedimiento es similar al utilizado en los oxácidos (sección oxácidos, tercer párrafo). Los puntos que hay que tener en cuanta son:
  • El elemento más electronegativo es el oxígeno y los elementos mas electropositivos son el metal y el no metal.
  • En la fórmula molecular el metal va a la izquierda, el no metal va al centro y el oxígeno va a la derecha.
  • El oxígeno trabaja con el número de valencia -2.
  • Los elementos que formaran el radical u oxoanión son el no metal y el oxígeno, razón que obliga a que la suma de valencias o cargas entre estos dos elementos sea negativa.
  • La suma de cargas entre los tres elementos o entre el metal y el radical será igual a cero, lo que significa que la molécula sera neutra.
Por ejemplo: Ca(ClO3)2. En resumen el procedimiento se basa en determinar la carga de uno de los dos radicales, que será negativo, y con esto se puede establecer el número con el que debe trabajar el metal, para que la suma entre este y los dos radicales sea igual a cero. Como primer paso hay que determinar la carga del radical; como hay 3 oxígenos en el radical y cada oxígeno trabaja con -2 la carga total de los oxígenos en un radical es de -6; como hay 1 cloro en el radical y la suma de valencias entre el oxigeno y el cloro dentro del radical debe ser negativo, el cloro trabajara con +5 de valencia. Para probar que el cloro debe trabajar con +5 únicamente, en este compuesto, se hace la operatoria con cada número de valencia del cloro; si el cloro trabajara con +1, la sumatoria con la carga -6 de los oxígenos seria igual a -5, esta carga de -5 seria de un solo radical y como hay dos, los radicales tendrían una carga de -10, así que el calcio para sumar una carga neta de cero para la molécula debería trabajar con un número de valencia +10, el cual no existe, entonces el cloro no puede trabajar con -1 en el radical; si el cloro trabajara con el +3 ocurriría lo mismo, al final el calcio para equilibrar la molécula debería trabajar con la valencia +6, valencia con la que no cuenta el cloro; y si el cloro trabajara con +6 la sumatoria de valencias entre el cloro y los oxígenos dentro del radical seria igual a cero, lo cual no es correcto ya que el radical debe tener una carga negativa. Ya que el cloro trabaja con +5 la carga sumada de los dos radicales es de -2, así que el calcio tendría que usar la valencia +2 para hacer cero la carga neta de la molécula. Cuando en una molécula hay solamente un radical se omiten los paréntesis de la fórmula
Diagrama sobre la distribución de valencias en un compuesto ternario. Esta imagen es explicada en la seccion 7.1 del articulo .
En el sistema tradicional se utiliza como nombre genérico el nombre del no metal con el sufijo y prefijo correspondiente a su número de valencia y como nombre especifico el nombre del metal, elemento proporcionado por el hidróxido. Según el número de valencia del no metal en la sal (o del no metal en el oxácido que da origen a la sal) los sufijos son:

hipo -   …   - oso         (para números de valencia 1 y 2)      hipo -   …   - ito 
                    … -oso                     (para números de valencia 3 y 4)      … - ito 
                    … -ico                     (para números de valencia 5 y 6)      … - ato 
                    per -    …   - ico         (para el número de valencia 7)        per -    …   - ato
En el ejemplo anterior, Ca(ClO3)2, como el cloro trabaja con la valencia +5, el compuesto se nombra Clorato de calcio. En el sistema Stock se utiliza como nombre genérico el nombre del no metal con el prefijo correspondiente al número de oxígenos presentes por radical en el compuesto (según la tabla de prefijos griegos), seguido de la partícula “oxo”, más el nombre del no metal con el sufijo ato. Después del nombre general se indica la valencia del no metal con números romanos, y luego como nombre especifico se utiliza el nombre del metal.
Oxácido + Hidróxido → Agua + Sal neutra
H3PO4 + 3Na(OH) → 3H2O + Na3PO4
Compuesto Nom. Stock Nom. tradicional
Na3PO4 fosfato (V) de sodio[2] fosfato de sodio u ortofosfato de sodio
CaSO4 sulfato (VI) de calcio[2] sulfato de calcio
NaClO4 clorato (VII) sodio[2] perclorato de sodio
Mg(BrO)2 bromato (I) de magnesio[2] hipobromito de mag

Sales


Las sales son compuestos que resultan de la combinación de sustancias ácidas con sustancias básicas. Las sales comprenden tanto compuestos binarios o diatómicos, como ternarios. Y hay distintos tipos o formas de clasificarlas que son: sales neutras, sales ácidas, sales básicas y sales mixtas.

Hidróxidos (compuestos ternarios básicos)


Son compuestos formados por la unión de un óxido básico con agua. Se caracterizan por tener en solución acuosa el radical o grupo oxhidrilo o hidroxilo OH-1. Para nombrarlos se escribe con la palabra genérica hidróxido, seguida del nombre del metal electropositivo terminado en -oso o -ico según las reglas generales para el sistema tradicional. La fórmula general es Metal + (OH)-1x. En la nomenclatura Stock y sistemática se nombran con el nombre genérico hidróxido y las respectivas reglas generales.
Óxido básico + Agua → Hidróxido
Na2O + H2O → 2Na(OH)
Compuesto Nomenclatura sistemática Nomenclatura Stock Nomenclatura tradicional
LiOH hidróxido de monolitio o de litio hidróxido de litio hidróxido lítico
Pb (OH)2 dihidróxido de plomo hidróxido de plomo (II) hidróxido plumboso
Al (OH)3 trihidróxido de aluminio hidróxido de aluminio (III) hidróxido alumínico o hidróxido de aluminio
Los hidróxidos cuando se disuelven en agua se ionizan formando cationes metal e iones hidroxilo u oxhidrilo. Este proceso de ionización es reversible, es decir que así como se forma los cationes metal e iones hidroxilo a partir de un hidróxido, inversamente, también se pueden formar hidróxidos a partir de los cationes e iones ya mencionados.
(Agua)……..
Na(OH) →→→→ Na+1 + (OH)-1
……..(Agua)
Na+1 + (OH)-1 →→→→ Na(OH)
Un caso especial lo constituye el hidróxido de amonio. El amoníaco es un gas muy soluble en agua, su fórmula es NH3. Al disolverse reacciona con el agua formando el compuesto hidróxido de amonio. Este proceso es reversible.
…..(Agua)
NH3 + H2O →→→→ NH4(OH)
(Agua)…..
NH4(OH) →→→→ NH3 + H2

Ácidos


Los ácidos son compuestos que se originan por combinación del agua con un anhídrido u óxido ácido, o bien por disolución de ciertos hidruros no metálicos en agua. En el primer caso se denominan oxácidos y en el segundo, hidrácidos. Ácido, también es toda sustancia que en solución acuosa se ioniza, liberando cationes hidrógeno.

Oxácidos (compuestos ternarios ácidos)


También llamados oxoácidos y oxiácidos, son compuestos ternarios originados de la combinación del agua con un anhídrido u óxido ácido. La fórmula general para los oxácidos es H + NoMetal + O. En el sistema tradicional se les nombra con las reglas generales para los anhídridos sustituyendo la palabra anhídrido por ácido (ya que de los anhídridos se originan). Para el sistema Stock se nombra al no metal con el sufijo –ato, luego el número de valencia del no metal y por último se agrega “de hidrógeno”. Y para la nomenclatura sistemática se indica el número de átomos de oxígeno con el prefijo correspondiente (según reglas generales para este sistema) seguido de la partícula “oxo” unida al nombre del no metal y el sufijo –ato, por último se agrega al nombre las palabras “de hidrógeno”.
Anhídrido + Agua → oxácido
SO3 + H2O → H2SO4
Compuesto Nomenclatura sistemática Nom. Stock Nom. tradicional
H2SO4 ácido tetraoxosulfúrico sulfato (VI) de hidrógeno[2] ácido sulfúrico
HClO4 ácido tetraoxoclórico clorato (VII) de hidrógeno[2] ácido perclórico
H2SO2 ácido dioxosulfúrico sulfato (II) de hidrógeno[2] ácido hiposulfuroso
Como se indica en la sección de los anhídridos, el nitrógeno y el fósforo no forman anhídridos cuando se enlazan con el oxígeno, mientras estos trabajan con los números de valencia 4 y 2, si no que forman óxidos y por esta razón el nitrógeno y el fósforo no pueden formar oxácidos con estos números de valencia.
Ya que para nombrar a los compuestos se necesita saber con qué números de valencia trabajan los elementos, una manera muy fácil para determinar los números, según la fórmula molecular, es sumando los números de valencia del oxígeno y el hidrógeno planteando una ecuación para la valencia del no metal, ya que la suma de cargas o valencias debe ser cero para que la molécula sea neutra (ver la sección reglas generales). Como se describe anteriormente la formula general para estos compuestos es H + NoMetal + O, donde el oxígeno es el elemento más electronegativo y el hidrógeno y el no metal son los elementos más electropositivos. El hidrógeno trabaja con la valencia +1 y el oxígeno con la valencia -2, siempre en estos compuestos. Por ejemplo: H2SO4, como hay 4 átomos de oxígeno y este trabaja con -2, en total para los oxígenos la carga seria de -8. De la misma manera, como hay 2 hidrógenos y este trabaja con valencia +1 la carga para este elemento es de +2. Como la suma de las cargas debe ser igual a cero, entonces el azufre trabajara con la valencia +6. Los elementos con valencias y la operatoria serían: H2+1 + S+6 + O4-2 => (+1)2 + (+6) + (-2)4 = 0. Como el azufre trabaja con +6 su terminación o sufijo sería –ico y el compuesto se nombraría “ácido sulfúrico”.

Por otra parte, ciertos anhídridos pueden formar hasta tres oxácidos distintos dependiendo de cuantas moléculas de agua se agreguen por molécula de anhídrido. En otras palabras, en ciertos oxácidos especiales, un solo “no metal” con una sola valencia puede formar hasta tres oxácidos. Estos no metales son el boro, fósforo, arsénico y el antimonio. Para diferenciar a estos oxácidos en el sistema tradicional se utilizan tres prefijos dependiendo de cuantas moléculas de agua se agregan por cada una molécula de anhídrido. Estos son:
meta-… (1 molécula de agua)
piro-… (2 moléculas de agua)
orto-… (3 moléculas de agua) este prefijo se puede omitir
El silicio y el yodo también pueden formar oxácidos con más de una molécula de agua, en dos casos especiales.
Compuesto Nom. sistemática Nom. Stock Nom. tradicional
P2O5 + H2O → 2HPO3 ácido trioxofosfórico trioxofosfato (V) de hidrógeno ácido metafosfórico
P2O5 + 2H2O → H4P2O7 ácido heptaoxodifosfórico heptaoxodifosfato (V) de hidrógeno ácido pirofosfórico
P2O5 + 3H2O → 2H3PO4 ácido tetraoxofosfórico tetraoxofosfato (V) de hidrógeno ácido ortofosfórico o ácido fosfórico
I2O7 + 5H2O → 2H5IO6 ácido hexaoxoyódico hexaoxoyodato (VII) de hidrógeno ácido ortoperyódico
SiO2 + 3H2O → H6SiO5 ácido pentaoxosilícico pentaoxosilicato (IV) de hidrógeno ácido ortosilícico o ácido silícico
Como se describe previamente los oxácidos están formados por un anhídrido (no metal + oxígeno) y el hidrógeno, pero como se indica en la secciones de anhídridos y óxidos básicos algunos metales, también pueden formar anhídridos, y por esta razón, también pueden formar oxácidos.
Compuesto Nomenclatura sistemática Nom. Stock Nom. tradicional
H2CrO4 ácido tetraoxocrómico cromato (VI) de hidrógeno[2] ácido crómico
H2MnO3 ácido trioxomangánico manganato (IV) de hidrógeno[2] ácido manganoso
H2MnO4 ácido tetraoxomangánico manganato (VI) de hidrógeno[2] ácido mangánico
HMnO4 ácido tetraoxomangánico manganato (VII) de hidrógeno[2] ácido permangánico
HVO3 ácido trioxovanádico vanadato (V) de hidrógeno[2] ácido vanádico
Los oxiácidos son compuestos que presentan uniones covalentes, pero cuando se disuelven en agua ceden fácilmente iones H+1 (protones). Esto se debe a que el agua, por la naturaleza polar de sus moléculas, tiene tendencia a romper las uniones covalentes polares de los ácidos, con formación de iones H+1 y del anión ácido correspondiente. Por ejemplo, el ácido nítrico que se disuelve en agua da lugar a un anión nitrato y un catión hidrógeno.
(Agua)……….
HNO3 →→→→ NO3-1 + H+1
La ionización de un oxácido al disolverse en agua es un ejemplo de proceso que se cumple en ambos sentidos, es decir que, al mismo tiempo que se forman iones a partir del ácido, este se regenera constantemente por la unión de aniones y cationes. Los procesos de esta naturaleza se denominan reversibles.
(Agua)……….
HNO3 →→→→ NO3-1 + H+1
……….(Agua)
NO3-1 + H+1 →→→→ HNO

Hidrocarburos


Son compuestos orgánicos poliatómicos formados por hidrógeno y carbono.

Germanos


Son compuestos binarios de hidrógeno y germanio que se enlazan generalmente siguiendo la misma fórmula que los silanos GenH2n+2. Los germanos al igual que los boranos y silanos no tienen un sistema de nomenclatura específico para ser nombrados y utilizan las mismas reglas de nomenclatura que los silanos, con la palabra germano como base.
Compuesto Nombre
GeH4 monogermano, germano o tetrahidruro de germano
Ge2H6 digermano
Ge3H8 trigermano
Ge4H10 tetragermano
Ge10H22 decagermano

Silanos


Son compuestos binarios de hidrógeno y silicio que se enlazan generalmente siguiendo la fórmula SinH2n+2. Los silanos al igual que los boranos no tienen un sistema de nomenclatura específico para ser nombrados y utilizan las mismas reglas de nomenclatura, con la palabra silano como base.
Compuesto Nombre
SiH4 monosilano, silano o tetrahidruro de silano
Si2H6 disilano
Si3H8 trisilano
Si4H10 tetrasilano
Si10H22 decasilano

Boranos


Son compuestos binarios entre el hidrógeno y el boro que generalmente se enlazan siguiendo la fórmula BnHn+4. Estos compuestos no se nombran en un sistema de nomenclatura específico ya que las reglas para nombrarlos son especiales. Se utiliza la palabra borano con un prefijo numérico griego (tabla de prefijos) que depende del número de átomos de borano presentes en la molécula.
Compuesto Nombre
BH3 monoborano o borano
B2H6 diborano
B3H7 triborano
B4H8 tetraborano
B10H14 decaborano

Boranos


Son compuestos binarios entre el hidrógeno y el boro que generalmente se enlazan siguiendo la fórmula BnHn+4. Estos compuestos no se nombran en un sistema de nomenclatura específico ya que las reglas para nombrarlos son especiales. Se utiliza la palabra borano con un prefijo numérico griego (tabla de prefijos) que depende del número de átomos de borano presentes en la molécula.
Compuesto Nombre
BH3 monoborano o borano
B2H6 diborano
B3H7 triborano
B4H8 tetraborano
B10H14 decaborano

Hidruros con los nitrogenoides


Estos hidrácidos o hidruros no metalicos son compuestos binarios de hidrógeno y un elementos de la familia V que se enlazan siguiendo la fórmula NoMetal + H3. A estos compuestos se les llama por sus nombres comunes, aunque muy raramente se les nombra con las reglas de nomenclatura de los hidruros (metálicos). En estos hidruros no metálicos el hidrógeno es el elemento más electronegativo en el compuesto.
No metal + Hidrógeno → Hidruro no metálico
N2 + 3H2 → 2NH3
Compuesto Nombre
NH3 amoníaco o trihidruro de nitrógeno
PH3 fosfina o trihidruro de fósforo
AsH3 arsina o trihidruro de arsénico
SbH3 estibina o trihidruro de antimonio
BiH3 bismutina o trihidruro de bismuto

[editar] Boranos

Son compuestos binarios entre el hidrógeno y el boro que generalmente se enlazan siguiendo la fórmula BnHn+4. Estos compuestos no se nombran en un sistema de nomenclatura específico ya que las reglas para nombrarlos son especiales. Se utiliza la palabra borano con un prefijo numérico griego (tabla de prefijos) que depende del número de átomos de borano presentes en la molécula.
Compuesto Nombre
BH3 monoborano o borano
B2H6 diborano
B3H7 triborano
B4H8 tetraborano
B10H14 decaborano

Hidrácidos e hidruros no metálicos


Los hidrácidos (compuestos binarios ácidos) e hidruros no metálicos son compuestos formados entre el hidrógeno y un no metal de las familias VIA y VIIA ( anfígenos y halógenos respectivamente). Los elementos de estas dos familias que pueden formar hidrácidos e hidruros no metálicos son: S, Se, Te, F, Cl, I y Br, que por lo general trabajan con el menor número de oxidación, -2 para los anfígenos y -1 para los halógenos. Estos compuestos se nombran en el sistema tradicional y de forma diferente según si están disueltos (estado acuoso) o en estado puro (estado gaseoso). Los hidrácidos pertenecen al grupo de los ácidos, Ver la sección oxácidos.
Los hidruros no metálicos son los que se encuentran en estado gaseoso o estado puro y se nombran agregando al no metal el sufijo -uro y la palabra hidrógeno precedido de la sílaba “de”. En este caso el nombre genérico es para el elemento más electropositivo que sería el del hidrógeno y el nombre especifico es para el elemento más electronegativo que sería el del no metal, por ejemplo H+1 Br-1 (g) bromuro de hidrógeno, bromuro como nombre especifico e hidrógeno como nombre genérico.
No metal + Hidrógeno → Hidruro no metálico
Cl2 + H2 → 2HCl(g)
Los hidrácidos provienen de disolver en agua a los hidruros no metálicos y por esa misma razón son estos los que se encuentran en estado acuoso. Se nombran con la palabra ácido, como nombre genérico, y como nombre específico se escribe el nombre del no metal y se le agrega el sufijo –hídrico. Al igual que en estado gaseoso el nombre genérico es nombrado por el elemento más electropositivo.
Hidruro No metálico + Agua → Hidrácido
HCl(g) + H2O → H+1 + Cl-1
Compuesto en estado puro en disolución
HCl cloruro de hidrógeno ácido clorhídrico
HF fluoruro de hidrógeno ácido fluorhídrico
HBr bromuro de hidrógeno ácido bromhídrico
HI yoduro de hidrógeno ácido yodhídrico
H2S sulfuro de hidrógeno ácido sulfhídrico
H2Se seleniuro de hidrógeno ácido selenhídrico
H2Te teluluro de hidrógeno ácido telurhídrico

Hidruros metálicos


Son compuestos binarios o diatómicos formados por hidrógeno y un metal. En estos compuestos, el hidrógeno siempre tiene valencia -1. Se nombran con la palabra hidruro. Su fórmula general es Metal + H. Para nombrar estos compuestos en el sistema tradicional se utiliza la palabra hidruro y se agrega el nombre del metal con los prefijos -oso o -ico con las reglas generales para esta nomenclatura. Para los sistemas Stock y sistemático se utilizan las reglas generales con la palabra hidruro como nombre genérico.
Metal + Hidrógeno → Hidruro metálico
2K + H2 → 2KH
Compuesto Nomenc. sistemática Nomenc. Stock Nomenc. tradicional
KH hidruro de potasio hidruro de potasio[2] hidruro potásico o hidruro de potasio
NiH3 trihidruro de níquel hidruro de níquel (III) hidruro niquélico
PbH4 tetrahidruro de plomo hidruro de plomo (IV) hidruro plúmbico

Ozónidos


Son compuestos binarios formados por el grupo ozónido, que son 3 oxígenos enlazados con una valencia total de -1. La fórmula general para los ozónidos es Metal + (O3)-1. Los ozónidos se nombran de forma análoga a los peróxidos con la diferencia que en estos compuestos se utiliza el nombre ozónido en lugar de peróxido.
Metal + Grupo ozónido → Ozónido
K + (O3)-1 → KO3
Compuesto Nomenclatura
KO3 ozónido de potasio
RbO3 ozónido de rubidio
CsO3 ozónido de cesio

Peróxidos


Los peróxidos son obtenidos cuando reacciona un óxido con el oxígeno monoatómico y se caracterizan por llevar el grupo peróxido o unión peroxídica (-o-o-). Son compuestos diatómicos en donde participan el grupo peróxido y un metal. La fórmula general de los peróxidos es Metal + (O-1) 2-2. En el sistema tradicional se utiliza el nombre peróxido en lugar de óxido y se agrega el nombre del metal con las reglas generales para los óxidos en esta nomenclatura. En las nomenclaturas Stock y sistemática se nombran los compuestos con las mismas reglas generales para los óxidos.
No todos los metales forman peróxidos y habitualmente lo hacen los del grupo 1A y 2A de la tabla periódica (alcalinos y alcalinotérreos).
Metal + Grupo peróxido → Peróxido
2Li+1 + (O)2-2 → Li2(O)2
Compuesto Nomenc. sistemática Nomenc. Stock Nomenc. tradicional
H2O2 dióxido de dihidrógeno peróxido de hidrógeno agua oxigenada
CaO2 dióxido de calcio peróxido de calcio peróxido de calcio
ZnO2 dióxido de zinc peróxido de zinc (II) peróxido de zinc

[editar] Superóxidos

También llamados hiperóxidos, son compuestos binarios que contienen el grupo o anión superóxido, la fórmula general es Metal + (O 2)-1 Aparentemente, el oxígeno tiene valencia -1/2. Generalmente el grupo superóxido reacciona con los elementos alcalinos y alcalinotérreos.
Se nombran como los peróxidos tan sólo cambiando peróxido por superóxido o hiperóxido.
Metal + Grupo superóxido → Superóxido
Li+1 + (O2)-1 → LiO2
Compuesto Nomenclatura
KO2 superóxido o hiperóxido de potasio
CaO4 ó Ca (O2)2 superóxido de calcio
CdO4 superóxido de cadmio

Óxidos básicos (metálicos)


Son aquellos óxidos que se producen entre el oxígeno y un metal cuando el oxígeno trabaja con un número de valencia -2. Su fórmula general es: Metal + O. En la nomenclatura Stock los compuestos se nombran con las reglas generales anteponiendo como nombre genérico la palabra óxido precedido por el nombre del metal y su número de valencia. En la nomenclatura tradicional se nombran con el sufijo -oso e -ico dependiendo de la menor o mayor valencia del metal que acompaña al oxígeno. Y en la nomenclatura sistemática se utilizan las reglas generales con la palabra óxido como nombre genérico.
En la nomenclatura tradicional para los óxidos que se enlazan con metales que tienen más de dos números de valencia se utilizan las siguientes reglas: metales con números de valencia hasta el 3 se nombran con las reglas de los óxidos y los metales con números de valencia iguales a 4 y mayores se nombran con las reglas de los anhídridos. Ejemplos: V2+3O3-2 se nombra como óxido, óxido vanádico; V2+5 O5-2 se nombra como anhídrido, anhídrido vanádico. Los átomos de vanadio con número de valencia 2 (-oso) y 3 (-ico) se nombran como óxidos y los átomos de vanadio con números de valencia 4 (-oso) y 5 (-ico) como anhídridos.
Ver Ecuaciones ajustadas (Discusión)
Metal + Oxígeno → Óxido básico
4Fe + 3O2 → 2Fe2O3
Compuesto Nomenc. sistemática Nomenc. Stock Nomenc. tradicional
K2O óxido de potasio[2] óxido de potasio[2] óxido potásico u óxido de potasio
Fe2O3 trióxido de dihierro óxido de hierro (III) óxido férrico
FeO monóxido de hierro óxido de hierro (II) óxido ferroso
SnO2 dióxido de estaño óxido de estaño (IV) óxido estánico
Cuando los no metales, nitrógeno y fósforo, trabajan con números de valencia 4 y 2, mientras se enlazan con el oxígeno se forman óxidos (ver la sección de anhídridos, penúltimo párrafo).

Nomenclatura tradicional, clásica o funcional


En este sistema de nomenclatura se indica la valencia del elemento de nombre específico con una serie de prefijos y sufijos griegos.
  • Cuando el elemento sólo tiene una valencia, simplemente se coloca el nombre del elemento precedido de la sílaba “de
(Na2O,oxido de sodio).
  • Cuando tiene dos valencias diferentes se usan los sufijos -oso e -ico.
-oso cuando el elemento usa la valencia menor: Fe+2O-2, hierro con la valencia +2, óxido ferroso
-ico cuando el elemento usa la valencia mayor: Fe2+3O3-2, hierro con valencia +3, óxido férrico[1]
  • Cuando tiene tres distintas valencias se usan los prefijos y sufijos
hipo -- oso (para la valencia inferior)
-oso (para la valencia intermedia)
-ico (para la valencia superior)
  • Cuando tiene cuatro distintas valencias se usan los prefijos y sufijos
hipo -- oso (para las valencias 1 y 2)
-oso (para la valencias 3 y 4)
-ico (para la valencias 5 y 6)
per -- ico (para la valencia 7):
  • Ejemplo: Mn2+7O7-2, óxido permangánico (ya que el manganeso tiene más de dos números de valencia y en este compuesto está trabajando con la valencia 7).

Stock


Este sistema de nomenclatura se basa en nombrar a los compuestos escribiendo al final del nombre con números romanos la valencia atómica del elemento con “nombre específico” (valencia o número de oxidación, es el que indica el número de electrones que un átomo pone en juego en un enlace químico, un número positivo cuando tiende a ceder los electrones y un número negativo cuando tiende a ganar electrones), anteponiendo a este número, encerrado entre paréntesis, se escribe el nombre genérico y el específico del compuesto de esta forma: nombre genérico + de + nombre del elemento específico + el No. de valencia. Normalmente, a menos que se haya simplificado la fórmula, la valencia puede verse en el subíndice del otro átomo (en compuestos binarios y ternarios). Los números de valencia normalmente se colocan como superíndices del átomo en una fórmula molecular.
Ejemplo: Fe2+3S3-2, sulfuro de hierro (III) [se ve la valencia III del hierro en el subíndice o atomicidad del azufre].

Nomenclatura por atomicidad, sistemática o estequiométrica (Nomenclatura IUPAC)


Este sistema de nomenclatura se basa en nombrar a las sustancias usando prefijos numéricos griegos que indican la atomicidad de cada uno de los elementos presentes en la molécula. La atomicidad indica el número de átomos de un mismo elemento en una molécula, como por ejemplo H2O que significa que hay un átomo de oxígeno y dos átomos de hidrógeno presentes en la molécula, aunque en una fórmula química la atomicidad también se refiere a la proporción de cada elemento en el que se llevan a cabo las reacciones para formar el compuesto; en este estudio de nomenclatura es mejor tomar la atomicidad como el número de átomos en una sola molécula. La forma de nombrar los compuestos es: prefijo-nombre genérico + prefijo-nombre específico (Véase en la sección otras reglas nombre genérico y específico).
Prefijos griegos Atomicidad
mono- 1
di- 2
tri- 3
tetra- 4
penta- 5
hexa- 6
hepta- 7
octa- 8
nona- (o eneá) 9
deca- 10

miércoles, 15 de diciembre de 2010

la configuración electrónica

En física y química, la configuración electrónica es la manera en la cual los electrones se estructuran en un átomo, molécula o en otra estructura física, de acuerdo con el modelo de capas electrónico, en el cual la función de onda del sistema se expresa como un producto de orbitales antisimetrizado.[1] [2] Cualquier conjunto de electrones en un mismo estado cuántico deben cumplir el principio de exclusión de Pauli al ser partículas idénticas. Por ser fermiones (partículas de espín semientero) el principio de exclusión de Pauli nos dice que la función de onda total (conjunto de electrones) debe ser antisimétrica.[3] Por lo tanto, en el momento en que un estado cuántico es ocupado por un electrón, el siguiente electrón debe ocupar un estado cuántico diferente.Archivo:Electron orbitals.svg

miércoles, 8 de diciembre de 2010

MODELO ATOMICO DE RUTHERFORD

El modelo atómico de Rutherford es un modelo atómico o teoría sobre la estructura interna del átomo propuesto por el químico y físico británico-neozelandés Ernest Rutherford para explicar los resultados de su "experimento de la lámina de oro", realizado en 1911.
Archivo:Rutherford atom.svg

MODELO ATOMICO ACTUAL

El modelo atómico actual llamado "modelo orbital" o "cuántico - ondulatorio" se basa en:
ü La dualidad onda-corpúsculo: Louis de Broglie.(1924) postula que el electrón y toda partícula material en movimiento tienen un comportamiento ondulatorio. Las propiedades ondulatorias y corpusculares de la materia se relacionan mediante:
Siendo h la constante de Planck y p el momento lineal de la partícula
ü El principio de incertidumbre de Heisenberg (1927) establece la imposibilidad de determinar simultáneamente y con precisión la posición y el momento lineal de una partícula en un momento dado. Ya no se po­dría decir dónde se encontraría con exactitud una partícula, como máximo se podría llegar a precisar el punto en dónde se hallaría con mayor probabilidad. "Es imposible determinar simultáneamente y con exactitud, la posición y la velocidad del electrón".
El producto de las imprecisiones de esas magnitudes e ve afectado por la restricción dada por la ecuación:
ü La naturaleza ondulatoria del electrón permite que este sea descrito por una ecuación de ondas. Schrödinger (1926) formuló una ecuación (ecuación de ondas de Schrödinger) que describe el comportamiento y la energía de las partículas subatómicas. Esta ecuación incorpora tanto el comportamiento de partícula, en términos de la masa m, como el de onda, en términos de una función de onda Ψ, que depende de la ubicación del sistema en el espacio.

modelo atómico de Dalton

El modelo atómico de Dalton, surgido en el contexto de la química, fue el primer modelo atómico con bases científicas, fue formulado en 1808 por John Dalton. El siguiente modelo fue el Modelo atómico de Thomson

Contenido

[ocultar]
El modelo atómico de Dalton explicaba por qué las sustancias se combinaban químicamente entre sí sólo en ciertas proporciones.
Además el modelo aclaraba que aún existiendo una gran variedad de sustancias diferentes, estas podían ser explicadas en términos de una cantidad más bien pequeña de constituyentes elementales o elementos.
En esencia, el modelo explicaba la mayor parte de la química orgánica del siglo XIX, reduciendo una serie de hechos complejos a una teoría combinatoria realmente simple.
Archivo:A New System of Chemical Philosophy fp.jpg

modelo atómico de Bohr

El modelo atómico de Bohr o de Bohr-Rutherford es un modelo cuantizado del átomo propuesto en 1913 por el físico danés Niels Bohr, para explicar cómo los electrones pueden tener órbitas estables alrededor del núcleo. Este modelo planetario es un modelo funcional que no representa el átomo (objeto físico) en sí ,sino que explica su funcionamiento por medio de ecuaciones.
Bohr se basó en el átomo de hidrógeno para realizar el modelo que lleva su nombre. Bohr intentaba realizar un modelo atómico capaz de explicar la estabilidad de la materia y los espectros de emisión y absorción discretos que se observan en los gases. Describió el átomo de hidrógeno con un protón en el núcleo, y girando a su alrededor un electrón. El modelo atómico de Bohr partía conceptualmente del modelo atómico de Rutherford y de las incipientes ideas sobre cuantización que habían surgido unos años antes con las investigaciones de Max Planck y Albert Einstein. Debido a su simplicidad el modelo de Bohr es todavía utilizado frecuentemente como una simplificación de la estructura de la materia.

Campo de trabajo: el átomo

El origen de la teoría atómica se remonta a la escuela filosófica de los atomistas, en la Grecia antigua. Los fundamentos empíricos de la teoría atómica, de acuerdo con el método científico, se debe a un conjunto de trabajos hechos por Antoine Lavoisier, Louis Proust, Jeremias Benjamin Richter, John Dalton, Gay-Lussac y Amadeo Avogadro entre muchos otros, hacia principios del siglo XIX.
Los átomos son la fracción más pequeña de materia estudiados por la química, están constituidos por diferentes partículas, cargadas eléctricamente, los electrones, de carga negativa; los protones, de carga positiva; los neutrones, que, como su nombre indica, son neutros (sin carga); todos ellos aportan masa para contribuir al peso.

HISTORIA DE LA QUIMICA

Las primeras experiencias del hombre como químico se dieron con la utilización del fuego en la transformación de la materia, la obtención de hierro a partir del mineral y de vidrio a partir de arena son claros ejemplos. Poco a poco el hombre se dio cuenta de que otras sustancias también tienen este poder de transformación. Se dedicó un gran empeño en buscar una sustancia que transformara un metal en oro, lo que llevó a la creación de la alquimia. La acumulación de experiencias alquímicas jugó un papel vital en el futuro establecimiento de la química.
La química es una ciencia empírica, ya que estudia las cosas por medio del método científico, es decir, por medio de la observación, la cuantificación y, sobre todo, la experimentación. En su sentido más amplio, la química estudia las diversas sustancias que existen en nuestro planeta así como las reacciones que las transforman en otras sustancias. Por otra parte, la química estudia la estructura de las sustancias a su nivel molecular. Y por último, pero no menos importante, sus propiedades.

LA QUIMICA

Se denomina química (del árabe kēme (kem, كيمياء), que significa "tierra") a la ciencia que estudia la composición, estructura y propiedades de la materia, como los cambios que ésta experimenta durante las reacciones químicas y su relación con la energía. Históricamente la química moderna es la evolución de la alquimia tras la Revolución química (1733).
Las disciplinas de la química han sido agrupadas por la clase de materia bajo estudio o el tipo de estudio realizado. Entre éstas se tienen la química inorgánica, que estudia la materia inorgánica; la química orgánica, que trata con la materia orgánica; la bioquímica, el estudio de substancias en organismos biológicos; la físico-química, comprende los aspectos energéticos de sistemas químicos a escalas macroscópicas, moleculares y atómicas; la química analítica, que analiza muestras de materia tratando de entender su composición y estructura. Otras ramas de la química han emergido en tiempos recientes, por ejemplo, la neuroquímica que estudia los aspectos químicos del cerebro.